University College London DEPARTMENT OF MATHEMATICS Mid-sessional Examinations 2005 Mathematics M11A Wednesday 12 January 2005, 1.30-3.30

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is **not** permitted in this examination.

- 1. (a) Define what it means for a sequence $(x_n)_{n=1}^{\infty}$ to converge to a limit a as $n \to \infty$.
 - (b) Prove that if $x_n \to a$ and $y_n \to b$ as $n \to \infty$ then $x_n y_n \to ab$ as $n \to \infty$.
 - (c) Prove that if |r| < 1 then $r^n \to 0$ as $n \to \infty$.
 - (d) Determine the limit as $n \to \infty$ of

$$\frac{(n+1)^{2005}}{2n^{2005}+1}.$$

- 2. (a) Define what it means for a to be an upper bound for a set S. Define what it means for a to be a least upper bound.
 - (b) State the Least Upper Bound principle.
 - (c) Prove that an increasing sequence $(x_n)_{n=1}^{\infty}$ that is bounded above converges to a limit.
 - (d) State and prove the Bolzano-Weierstrass Theorem.
- 3. (a) Define what it means for a series $\sum_{n=1}^{\infty} x_n$ to be convergent.
 - (b) State the Comparison Test for series.
 - (c) State and prove the Ratio Test for series.
 - (d) For each of the following series, determine whether or not it converges:

$$\sum_{n=1}^{\infty} \frac{(2n)!(3n)!}{n!(4n)!}$$

$$\sum_{n=1}^{\infty} \frac{(3n)!}{26^n (n!)^3},$$

$$\sum_{n=1}^{\infty} \frac{(2n)!(3n)!}{n!(4n)!}, \qquad \sum_{n=1}^{\infty} \frac{(3n)!}{26^n (n!)^3}, \qquad \sum_{n=1}^{\infty} \frac{n!(2n)! \sin(n^{2005})}{(3n)!}.$$

- 4. (a) Define what it means to say for a function f that $f(x) \to L$ as $x \to c$.
 - (b) Define what it means to say that f is continuous at c.
 - (c) Prove that the following two statements are equivalent:
 - 1. f is continuous at c
 - 2. For every sequence $(x_n)_{n=1}^{\infty}$ with $x_n \neq c$ and $x_n \to c$ as $n \to \infty$, we have $f(x_n) \to f(c)$ as $n \to \infty$.
 - (d) Suppose that g is continuous at c and f is continuous at g(c). Prove that $f \circ g$ is continuous at c.
 - (e) Suppose that g is continuous at c and $f \circ g$ is continuous at c. Must f be continuous at g(c)?
- 5. (a) Define $\exp(x)$ for a real number x by giving a power series.
 - (b) State the Intermediate Value Theorem.
 - (c) Prove that for every y > 0 there exists a unique real number $\log y$ such that $\exp(\log y) = y$. (You may assume that $\exp(x)$ is continuous.)
 - (d) Prove that, for x, y > 0,

$$\log(xy) = \log(x) + \log(y).$$

- (e) Prove that $\log(x)$ is continuous for x > 0.
- 6. (a) Define what it means for a function f to be convex on an interval I.
 - (b) State and prove Jensen's Inequality for convex functions.
 - (c) State and prove the Arithmetic Mean/Geometric Mean inequality. [You may assume that $-\log x$ is convex.]
 - (d) Prove that, for $n \ge 1$,

$$(n!)^{1/n} \leqslant \frac{n+1}{2}.$$